Proposed Designs for Sustainable Woven Polypropylene Fabrics
Abstract
This research deals with the issue of achieving sustainability of woven polypropylene fabrics and the potential to produce innovative clothing that meet aesthetic and functional requirements from polypropylene leftover. It also seeks to identify the impact of such an endeavor on achieving environmental sustainability, given that the Kingdom of Saudi Arabia is one of the largest petrochemical producing countries in the world, that has manufacturing industries including industries that produce and process woven Bulk Propylene used in packaging.
This research aims to determine the potential of utilizing leftovers of pre-consumer Bulk Propylene Bag, (BPB) by means of upcycling them into plastic jackets that can be worn to protect against rain water. The experimental method was applied for its suitability to achieve the objectives of the research. The questionnaire was used as a tool to get the opinions of specialists regarding the two's designs fulfillment of the aesthetic and functional requirements, and the possibility of using leftovers from the manufacture of woven polypropylene sacks in the production of women's rainwater garments.
The study came out with results, the most important of which was the possibility of benefiting from the remaining unused polypropylene woven polypropylene (BPB) sacks in the production of high-quality plastic jackets that can be worn to protect against rainwater, in line with consumer tastes and market requirements. In the light of the results, the research came out with several recommendations, including the necessity of examining the advanced methods used to reduce unconsumed manufacturing leftover and examining their recycling in the production of new products that will be put on the market, and the establishment of communication channels between factories and specialized colleges to help provide appropriate solutions, especially to amend faulty manufacturing stages that result in large quantity of leftover.
References
2. إسماعيل، سعيد. (2020). التكنولوجيا الداعمة لمنظومة التكامل التصميمي لإنتاج أثاث من الخامات المعاد تدويرها.
3. إسماعيل، هدير سيد محمد محمد، سنوسي، علي محمد، وعبده، باسم حسن. (2019). التكنولوجيا الداعمة لمنظومة التكامل التصميمي لإنتاج أثاث من الخدمات المعاد تدويرها. مجلة التصميم الدولية، 9 (4) ، 165 - 174.
4. الخاليلة، رضا محمد عايد (2022). أهمية تدوير النفايات وأنواع إعادة التدوير، المجلة العربية للنشر العلمي، 50، 2663-5798
5. العامودي، شذى علي عمر (2021). تصميمات مقترحة للزي الرياضي لطالبات المرحلة المتوسطة في ضوء المتطلبات الجمالية والوظيفية. المجلة الدولية للعلوم الإنسانية والاجتماعية، (23)، 228-256.
6. بنجابي، عبير حسن محمد. (2008). إعادة تدوير أقمشة الجوت وتوظيفها في الاستخدامات المختلفة. (رسالة ماجستير غير منشورة)، جامعة أم القرى.
7. بارك، لطفية، والسيد، سمية. (2008). إعادة تدوير مخلفات صناعة الملابس، المؤتمر الأول الدولي بالفنون التطبيقية والتوقعات المستقبلية بمدينة دمياط، مصر.
8. عبد الفتاح، لمياء إبراهيم احمد .(2010). برنامج تدريبي لتأهيل الخريجات لصناعة بعض مكملات الملابس من بقايا الأقمشة. المؤتمر السنوي العربي الخامس
9. Arafat, Y., & Uddin, A. J. (2022). Recycled fibers from pre- and post-consumer textile waste as blend constituents in manufacturing 100% cotton yarns in ring spinning: A sustainable and eco-friendly approach. Heliyon, 8(11), e11275. https://doi.org/10.1016/j.heliyon.2022.e11275
10. Brown, S. (2013). Refashioned: Cutting-edge clothing from upcycled materials. London, United Kingdom: Lawrence King Publishing Ltd
11. Contin, B., Kohan, L., Duarte, L. O., Fernandes, P. R. B., Ruchel-Soares, R., Siqueira, M. U., & Baruque-Ramos, J. (2022). Brazilian Cotton Jeans Recycling: Characterization of Shredded Pre-consumer Waste. Materials Circular Economy, 4(1). https://doi.org/10.1007/s42824-022-00060-8
12. FAO, (n.d).Sustainability Pathways: Sustainability assessments (SAFA). (n.d.). https://www.fao.org/nr/sustainability/sustainability-assessments-safa/en/#:~:text=Sustainable%20development%20has%20been%20defined,for%20present%20and%20future%20generations.
13. Fletcher, K., & Grose, L. (2012). Fashion and Sustainability: Design for Change. London: Laurence King Publishing Ltd.
14. Kadolph, S. J., & Marcketti, S. B. (2017). Textiles.
15. Lakshmi, A., Pandit, P., Bhagwat, Y., & Nayak, G. (2022). A Review on Efficiency of Polypropylene Fiber-Reinforced Concrete. Lecture Notes in Civil Engineering, 799–812. https://doi.org/10.1007/978-981-16-2826-9_50
16. Lamb, J. M. & Kallal, M. J. (1992). A conceptual framework for apparel design. Clothing and Textiles Research Journal, 10 (2), 42-47.
17. Małek, M., Łasica, W., Kadela, M., Kluczyński, J., & Dudek, D. J. (2021). Physical and Mechanical Properties of Polypropylene Fibre-Reinforced Cement–Glass Composite. Materials, 14(3), 637. https://doi.org/10.3390/ma14030637
18. Patti, A., Cicala, G., & Acierno, D. (2020). Eco-sustainability of the textile production: Waste recovery and current recycling in the composites world. Polymers, 13(1), 134.
19. UN. (n.d.). Sustainability | United Nations. https://www.un.org/en/academic-impact/sustainability
20. Wang, Y. (2006). Recycling in Textiles. Woodhead Publishing.